University of California, Riverside

Materials Science and Engineering



Home


bldgs

Materials Science and Engineering (MSE) is concerned with the creation of materials with novel properties and their use in a variety of fields ranging from ultra-fast computer chips and high-efficiency solar cells to high-powered jets, and even beauty products. Today, engineering innovations are increasingly dependent on breakthroughs in materials at the micro- and nanometer scale. Students in MSE acquire a solid background in the basic sciences and in the engineering of materials, with hands-on laboratory experience in nano-scale materials characterization and processing. This program prepares graduates for a variety of careers in fields such as nanotechnology, electronics, computing, the biomedical, automotive and aerospace industries, as well as government agencies and research laboratories.

Multiple fellowships are available for new MSE graduate student applicants!

Research Highlights of MSE Faculty

New Paper-like Material Could Boost Electric Vehicle Batteries

Researchers create silicon nanofibers 100 times thinner than human hair for potential applications in batteries for electric cars and personal electronics

Mihri and Cengiz Ozkan in their lab

RIVERSIDE, Calif. (www.ucr.edu) — Researchers at the University of California, Riverside’s Bourns College of Engineering have developed a novel paper-like material for lithium-ion batteries. It has the potential to boost by several times the specific energy, or amount of energy that can be delivered per unit weight of the battery.

This paper-like material is composed of sponge-like silicon nanofibers more than 100 times thinner than human hair. It could be used in batteries for electric vehicles and personal electronics.

The findings were just published in a paper, “Towards Scalable Binderless Electrodes: Carbon Coated Silicon Nanofiber Paper via Mg Reduction of Electrospun SiO2 Nanofibers,” in the journal Nature Scientific Reports. The authors were Mihri Ozkan, a professor of Materials Science and Engineering and Electrical and Computer Engineering, Cengiz S. Ozkan, a professor of Materials Science and Engineering and Mechanical Engineering, and six of their graduate students: Zach Favors (MSE), Hamed Hosseini Bay (ME), Zafer Mutlu (MSE), Kazi Ahmed (EE), Robert Ionescu (MSE) and Rachel Ye (ME).

The nanofibers were produced using a technique known as electrospinning, whereby 20,000 to 40,000 volts are applied between a rotating drum and a nozzle, which emits a solution composed mainly of tetraethyl orthosilicate (TEOS), a chemical compound frequently used in the semiconductor industry. The nanofibers are then exposed to magnesium vapor to produce the sponge-like silicon fiber structure.

Conventionally produced lithium-ion battery anodes are made using copper foil coated with a mixture of graphite, a conductive additive, and a polymer binder. But, because the performance of graphite has been nearly tapped out, researchers are experimenting with other materials, such as silicon, which has a specific capacity, or electrical charge per unit weight of the battery, nearly 10 times higher than graphite.

The problem with silicon is that is suffers from significant volume expansion, which can quickly degrade the battery. The silicon nanofiber structure created in the Ozkan’s labs circumvents this issue and allows the battery to be cycled hundreds of times without significant degradation.

 

silicon nanofiber images

(a) Schematic representation of the electrospinning process and subsequent reduction process. Digital photographs of (b) as-spun SiO2 nanofibers paper, (c) etched silicon nanofiber paper, and (d) carbon-coated silicon nanofiber paper as used in the lithium-ion half-cell configuration.

This technology also solves a problem that has plagued free-standing, or binderless, electrodes for years: scalability. Free-standing materials grown using chemical vapor deposition, such as carbon nanotubes or silicon nanowires, can only be produced in very small quantities (micrograms). However, Favors was able to produce several grams of silicon nanofibers at a time even at the lab scale.

The researchers’ future work involves implementing the silicon nanofibers into a pouch cell format lithium-ion battery, which is a larger scale battery format that can be used in EVs and portable electronics.

The research is supported by Temiz Energy Technologies. The UC Riverside Office of Technology Commercialization has filed patents for inventions reported in the research paper.




 


Researchers Make Magnetic Graphene

UC Riverside research could lead to new multi-functional electronic devices

Now a team of physicists at the University of California, Riverside has found an ingenious way to induce magnetism in graphene while also preserving graphene’s electronic properties. They have accomplished this by bringing a graphene sheet very close to a magnetic insulator – an electrical insulator with magnetic properties.

“This is the first time that graphene has been made magnetic this way,” said Jing Shi, a professor of materials science and engineering and physics and astronomy, whose lab led the research. “The magnetic graphene acquires new electronic properties so that new quantum phenomena can arise. These properties can lead to new electronic devices that are more robust and multi-functional.”

The finding has the potential to increase graphene’s use in computers, as in computer chips that use electronic spin to store data.

 Read the full story here...

 

Professor Mathaudhu to receive the NORM AUGUSTINE AWARD for Outstanding Achievement in
Engineering Communications

Dr. Suveen Mathaudhu

"Named to receive the Augustine Award for his compelling and innovative approach of engaging children, young people, and the general public with a better understanding of real science and technology by use of pop culture and other nontraditional means of communicating excitement about STEM."

UCR Today Story

MSE faculty Suveen Mathaudhu on the Science of Superheroes

Mathaudhu   Suveen Mathaudhu, an assistant professor of mechanical engineering and expert on the science of superheroes.

Prof. Mathaudhu talks about the super materials behind great comic book characters with NPR Member Station KPCC. Please click here to for the entire interview. 

 

 

Fall 2014 New Graduate Student Cohort


 

MSE Welcomes 17 New Graduate Students!

F14 CohortFrom top left: Dr. Ludwig Bartels, Andrew Chen, Chad Warren, Daniel Kosilla, Darren Dewitt, Devin Coleman, Sina Shahrezaei, Ece Aytan, Gardenia Rodriguez, Dr. Javier Garay
From bottom left: David Barroso, Fei Gu, Ariana Nguyen, Pan Xia
 
MSE Orientation Session 2
 
                               From left: Siyu Zhang, Dante O'Hara, Daisy Patino, Christian Roach
                               Not pictured: Xiaoxiong Ding, Hadi Maghsoudiganjeh
 

 MSE NEWS


 

MSE Welcomes Two New Faculty!

The MSE Program is proud to announce the recent hire of two new joint faculty members, Suveen Mathaudhu and Brian Wong, to start in the 2014/2015 academic year.

 

Suveen Mathaudhu, Ph. D.

Lorenzo MangoliniProf. Mathaudhu serves as an Assistant Professor in the Mechanical Engineering Department and Materials Science and Engineering Program, where he studies the underpinning mechanisms that will make metallic materials and composites lighter and stronger.  He received his Ph.D. in Mechanical Engineering from Texas A&M University in 2006.  There, he studied “top-down” processing methods, such as severe plastic deformation, and “bottom-up” processing methods, such as powder consolidation to produce bulk nanoscrystalline and metastable metals for structural and defense applications.  He subsequently served as an ORISE post-doctoral Fellow and then a Staff Scientist at the U.S. Army Research Laboratory from 2006-2010.  From 2010 - 2014, he was the Program Manager for the Synthesis and Processing of Materials at the U.S. Army Research Office, and also, an Adjunct Assistant Professor in the Materials Science and Engineering Department at North Carolina State University.  He is active in several technical societies, including the Minerals, Metals and Materials Society, the Materials Research Society and ASM International.  He is also an expert on the science of superheroes as depicted in comic books and their associated movies, and frequently speaks and consults on this subject.  

 

Bryan Wong Ph.D.

Bryan Wong

Prof. Wong serves as an Assistant Professor in the Chemical and Environmental Department and the Materials Science and Engineering Program, where he studies the development and application of theoretical tools to calculate, understand. and rationally design functional materials- working closely with experimentalists during each step. The ultimate motivation of his research is to accurately predict the properties of multifunctional materials – either previously synthesized or yet to be made – largely using first-principles calculation techniques. Of particular interest are technologically important problems in energy generation and conversion, especially those requiring an accurate understanding of electron dynamics. Examples of techniques and systems that are currently studied in his group include time-dependent density functional theory for photovoltaic materials, electron transport in chromophore-functionalized carbon nanosystems, optoelectronic effects in core-shell semiconductor nanowires, and large-scale, first-principles calculations for predicting growth and electronic properties of nanomaterials.  Prof. Wong received his Ph.D. in Physical Chemistry from Massachusetts Institute of Technology (M.I.T.) in 2007.  After graduation, he was employed by Sandia National Labs as a Senior Member of the Technical Staff for the Nanoelectronics and Nanophotonics Group.  He has also held the position of Assistant Professor at Drexel University in the Department of Chemistry.  

 

 

 

 

News Highlights 

Pressure Cooking to Improve Electric Car Batteries

By creating nanoparticles with controlled shape, engineers believe smaller, more powerful and energy efficient batteries can be built.  

Researchers at the University of California, Riverside’s Bourns College of Engineering have redesigned the component materials of the battery in an environmentally friendly way to solve some of these problems. By creating nanoparticles with a controlled shape, they believe smaller, more powerful and energy efficient batteries can be built. By modifying the size and shape of battery components, they aim to reduce charge times as well.

“This is a critical, fundamental step in improving the efficiency of these batteries,” said David Kisailus, an associate professor of Materials Science and Engineering and lead researcher on the project.  Link to UCR News

 

The annual rankings by Leiden University in the Netherlands ranked UC Riverside's programs in engineering and natural sciences 10th in the world, ahead of institutions such as Princeton, Yale, and Caltech. The Leiden rankings objectively measure scientific impact based on research citations and collaboration worldwide.Link to UCR News

 

Professor Co-edits Book on Graphene

Alexander Balandin co-edits and co-authors a chapter in the book about the novel synthetic material

A University of California, Riverside professor of Materials Science and Engineering has co-edited a book about innovative technologies using graphene.

Alexander A. Balandin, who is also the founding chair of the materials science and engineering program at UC Riverside’s Bourns College of Engineering, co-edited the book “Innovative Graphene Technologies: Evaluation and Applications, Volume 2,” with Atul Tiwari, a research faculty member at the University of Hawaii. It was published bySmithers Rapra Publishing.

Balandin has also contributed a chapter on thermal properties and applications of graphene, which was co-authored with Denis Nika, an associate professor and chair of the physics department in Moldova State University. The unique heat conduction properties of graphene were discovered at UCR. This year, professor Balandin will receive the MRS Medal for his experimental and theoretical work on thermal properties of graphene. Link to UCR News Release

 

Dean Reza Abbaschian Honored at Materials Science and Technology Conference
Link to UCR News Release

Five UC Riverside researchers are part of $40 million project to develop materials and structures to enable more energy efficient computers and cell phones

 

News Archive

MSE Building Opened January 2011
msebldg

Download our Brochure

brochure

View our Poster

poster

More Information 

General Campus Information

University of California, Riverside
900 University Ave.
Riverside, CA 92521
Tel: (951) 827-1012

College Information

Bourns College of Engineering
307Materials Science & Engineering Building

Tel: (951) 827-3392
Fax: (951) 827-3188x
E-mail: katie@engr.ucr.edu

Related Links

Footer